找回密码
 立即注册

扫一扫,登录网站

首页 区块链生态 查看内容
  • 35182
  • 0
  • 分享到

怎么如何利用参与并投资区块链资产赚钱?

2019-10-28 22:49

来源: 分布式资本

检验比特币的收益率的统计特性



3.检验比特币的收益率的统计特性


——在决定如何投资之前,需要先了解数字资产收益率的统计学特性

3.1 跨资产相关性检验——“特立独行”

为保证长期收益率的稳健性,资产管理机构的组合配置往往是多种多样的,从跨资产相关性的角度,在下面的图2和表3中看到,无论是在长周期还是短周期内,比特币的回报与主流大类资产的相关性极低(相关性绝对值最低,意味着既无明显正相关也无明显负相关),我们选取的参照物包括美国股市、全球股市、美国债券、国际债券、黄金、美国房地产、国际房地产、自然资源。

事实上,由于全球经济活动的一体化和国际间金融活动相互渗透、相互影响,大类资产的联动已经变得异常迅速和紧密,类似比特币这种“特立独行”的资产实际上相当稀缺,意味着比特币可以在分散传统金融市场里的系统性风险上发挥积极作用。

表格 3: 跨资产2011-2019 周度 / 月度 收益率相关性矩阵

640.webp (25).jpg

640.webp (26).jpg

来源:币安研究院、分布式资本、彭博

3.2 波动性检验——2014年以后波动率有了显著下降

诚然,从直觉上感知,比特币是一种波动性较大的资产,但这并不意味着传统资产的波动性一定都小于比特币。

从下图中可以看出,传统资产和比特币的年化波动率比较。比特币的波动性接近天然气,甚至一度低于一些新兴市场的股票和货币。

事实上,自2014年以来,比特币的波动性中值显著下降,降低了比特币配置的风险。

图2: 比特币和天然气年化波动率走势

640.webp (27).jpg

图3:比特币和多资产年化波动率对比

640.webp (28).jpg

来源:币安研究院、分布式资本

3.3 收益率分布特性——尖峰、肥尾、正偏

在表格4里,我们选取了几种大类资产的历史日均收益率进行统计特性描述,样本采自2011年1月1日至2019年4月26日。

可以明显看出,比特币的收益率不服从正态分布,呈现正偏态、肥尾、尖峰的特征,这些特征也与股票市场相似,但比起股票市场“夸张”的多。

表格 4: 多资产2011.1.1~2019.4.26 每收益率统计特性

640.webp (29).jpg

其中“Skewness”也就是“偏度”代表日收益均值与中值的偏离程度,数字越大,获得正回报的概率就越高。比特币收益率的偏度极高,显示了其收益率分布的不对称性。理论上,比特币这样极度正偏的资产应该受到投资者青睐。

此外,“Kurtosis峰度”也体现了比特币的收益率处于“肥尾尖峰”状态,峰度远远大于3(高达488),意味着尾部较“正态分布”更厚,这意味着我们经历“异常收益”的几率更高。

投资者通常会避开尖峰肥尾的股票,因为高波动性意味着相对于平均回报水平,投资者遭遇尾部风险的可能性要高得多。

需要注意的是,偏度和我们前面提到的所谓尖峰肥尾的特征,都是与偏度为0,峰度为0的“正态分布”相比较的。通常在进行实证分析时,假设收益率数据为正态分布,便于建模和分析。但实际上很少有资产的收益率符合正态分布,尤其我们现在讨论的比特币。

忽略了正态分布假设下的尾部风险导致长期资本管理公司(LTCM)倒闭,所以认识到肥尾象对数字资产市场的风险控制也具有重要意义。

然而,由于金融市场的尾部风险是“双向的”,例如在牛市中,峰度越高,股票获得极高回报的可能性就越大,反之,在熊市中,发生极端亏损的可能性也会增加。这可能导致投资者在不同时期对峰度的偏好不一致。

因此,好消息是,尽管比特币有很高的峰度,但收益率是正偏的,即“肥尾”也更多出现在正收益区间,如图3所示,比特币的历史收益率分布显示尽管其可能出现“大跌”的的概率高于股市,但其可能出现“大涨”的概率更高,而且涨幅不低。

美国知名数字货币分析机构Fundstrate创始人Tom Lee也曾对比特币的这些统计特性做出过类似的描述,措辞更为通俗——在任何给定的年份中,比特币价格的绝大部分收益仅出现在十个最大交易日中,如果错过这短暂的时间,收益率将是负数。

图4:比特币收益与美国和中国股市的收益率分布

640.webp (30).jpg

来源:币安研究院、分布式资本

3.4 尖峰肥尾特性的来源及注意点

埃德加•彼得斯(EdgarPeters, 1991)认为,不同投资者对市场信息的反应是不同的,尽管信息多是线性到达市场的,但对信息的理解不同和投资时点的不同都会导致对信息产生不一样的反应,因此某刻价格并不能反应出全部的信息,价格的变动也不是独立的,收益率也将更多地表现出“尖峰”和“肥尾”。

换句话说,如果市场上的信息是线性到达每个“理性人”,但投资者在趋势确定之前忽略了它,然后以累积的方式对所有被忽略的信息做出反应,这也可能导致回报的尖峰肥尾分布。或者另外一种情况是,如果影响市场的信息分布是“尖峰”的,那么证券收益也将倾向于这样分布,比如来自监管层的利空可能是扎堆出现,而不是线性出现的。

无论如何,前文里的统计数据显示加密货币市场的信息流动似乎更不顺畅,且投资者的反应可能比传统市场参与者更慢,这符合我们对加密货币市场投资人结构的推测。所以在投资数字资产的时候,等待“利空出尽”或“利好兑现”的时间周期可能要比传统资产更长,even-driven型投资人的交易行为需要相应的做出改变。

图5:投资者结构比较——数字资产市场(估算)vs.股票市场(数据截止2019年1月)

640.webp (31).jpg

数据来源:币安研究院, Cryptofundresearch.com, Bloomberg

此外,尖峰肥尾现象使得大量的信息定价被留在尾部,“平庸”的事件权重变小。因此,在资产配置中,尤其在波动容忍度低的投资组合中,我们应该比传统市场更关注肥尾风险的扰动,以及可能带来的潜在久期错配的风险。


版权申明:本内容来自于互联网,属第三方汇集推荐平台。本文的版权归原作者所有,文章言论不代表链门户的观点,链门户不承担任何法律责任。如有侵权请联系QQ:3341927519进行反馈。
相关新闻
发表评论

请先 注册/登录 后参与评论

    回顶部